Anatomy and Physiology II

CREDIT HOURS 3
LEVEL LOWER

PUBLISHED NOVEMBER 2017
The most current content guides are available at: www.excelsior.edu/contentguides
CONTENTS

Preparing for the Exam ... 1
Before You Choose This UExcel Exam .. 1
 Uses for the Examination ... 1
 Examination Length and Scoring ... 1
UExcel Exam Resources ... 1
 Excelsior College Bookstore .. 1
 UExcel Practice Exams .. 1
 Excelsior College Library .. 2
 Online Tutoring .. 2
 MyExcelsior Community .. 2
Preparing for UExcel Exams ... 2
 How Long Will It Take Me to Study? ... 2
 Study Tips ... 2
 Using UExcel Practice Exams .. 2
 About Test Preparation Services ... 3
Preparing for This Exam ... 3
 Prior Knowledge ... 3
 Using the Content Outline ... 3
 Using the Sample Questions and Rationales 3
Recommended Resources for the UExcel Exam in Anatomy and Physiology II ... 4
 Textbooks .. 4
 Open Educational Resources .. 4
 Reducing Textbook Costs ... 4
Content Outline .. 5
 General Description of the Examination 5
 Content Outline ... 6
Sample Questions .. 12
 Rationales .. 15
Taking the Exam .. 19
Registering for Your Exam ... 19
 Register Online .. 19
 Examination Administration ... 19
 Computer-Delivered Testing .. 19
On the Day of Your Exam .. 19
 Important Reminders ... 19
 Academic Honesty Nondisclosure Statement 19
 Information About UExcel Exams for Colleges and Universities . 20
Anatomy and Physiology II Exam Development Committee 20
Before You Choose This UExcel Exam

Uses for the Examination

- Excelsior College, the test developer, recommends granting three (3) semester hours of lower-level undergraduate credit to students who receive a score equivalent to a letter grade of C or higher on this examination. This examination may be used to help fulfill a science requirement or as a free elective for all Excelsior College degree programs that allow free electives. It also partially fulfills the anatomy and physiology core requirement for the Excelsior College nursing degrees.
- Other colleges and universities also recognize this exam as a basis for granting credit or advanced standing.
- Individual institutions set their own policies for the amount of credit awarded and the minimum acceptable grade.

Exam-takers who have applied to Excelsior College should ask their academic advisor where this exam fits within their degree program.

Exam-takers not enrolled in an Excelsior College degree program should check with the institution from which they wish to receive credit to determine whether credit will be granted and/or to find out the minimum grade required for credit. Those who intend to enroll at Excelsior College should ask an admissions counselor where this exam fits within their intended degree program.

Examination Length and Scoring

The examination consists of approximately 120 questions, most of which are multiple choice; for samples of all the item types on this exam, see the sample items in the back of this guide. Some items are unscored, pretest items. The pretest items are embedded throughout the exam and are indistinguishable from the scored items. You will have two (2) hours to complete the examination. Your score will be reported as a letter grade.

UExcel Exam Resources

Excelsior College Bookstore

The Excelsior College Bookstore offers recommended textbooks and other resources to help you prepare for UExcel exams.

The bookstore is available online at: www.excelsior.edu/bookstore

UExcel Practice Exams

The official UExcel practice exams are highly recommended as part of your study plan. Once you register for your UExcel exam, you are eligible to purchase the corresponding practice exam, which can be taken using any computer with a supported Web browser. Each practice exam includes two forms that you may take within a 180-day period.
Excelsior College Library

Enrolled Excelsior College students can access millions of authoritative resources online through the Excelsior College Library. Created through our partnership with the Sheridan Libraries of The Johns Hopkins University, the library provides access to journal articles, books, websites, databases, reference services, and many other resources. Special library pages relate to the nursing degree exams and other selected exams. To access it, visit www.excelsior.edu/library (login is required).

Our library provides:

- 24/7 availability
- The world’s most current authoritative resources
- Help and support from staff librarians

Online Tutoring

Excelsior College offers online tutoring through SMARTTHINKING™ to connect with tutors who have been trained in a variety of academic subjects. To access SMARTTHINKING, go to www.excelsior.edu/smarthinking. Once there, you may download a copy of the SMARTTHINKING Student Handbook as a PDF.

MyExcelsior Community

MyExcelsior Community enables Excelsior College students and alumni to interact with their peers online. As members, students can participate in real-time chat groups, join online study groups, buy and sell used textbooks, and share Internet resources. Enrolled students have automatic access from their MyExcelsior page. Visit www.excelsior.edu/myexcelsiorcommunity.

Preparing for UExcel Exams

How Long Will It Take Me to Study?

A UExcel exam enables you to show that you’ve learned material comparable to one or more 15-week college-level courses. As an independent learner, you should study and review as much as you would for a college course. For a 3-credit course in a subject they don’t know, most students would be expected to study nine hours per week for 15 weeks, for a total of 135 hours.

Study Tips

Become an active user of the resource materials. Aim for understanding rather than memorization. The more active you are when you study, the more likely you will be to retain, understand, and apply the information.

The following techniques are generally considered to be active learning:

- **preview or survey** each chapter
- **highlight or underline** text you believe is important
- **write questions or comments** in the margins
- **practice re-stating content** in your own words
- **relate what you are reading** to the chapter title, section headings, and other organizing elements of the textbook
- **find ways to engage** your eyes, your ears, and your muscles, as well as your brain, in your studies
- **study with a partner or a small group** (if you are an enrolled student, search for partners on MyExcelsior Community)
- **prepare your review notes** as flashcards or create recordings that you can use while commuting or exercising

When you feel confident that you understand a content area, review what you have learned. Take a second look at the material to evaluate your understanding. If you have a study partner, the two of you can review by explaining the content to each other or writing test questions for each other to answer. Review questions from textbook chapters may be helpful for partner or individual study, as well.

Using UExcel Practice Exams

We recommend taking the first form of the practice exam when you begin studying, to see how much you already know. After taking the first practice exam, check your performance on each question and find out why your answer was right or wrong. This feedback will help you improve your knowledge of the subject and identify areas of weakness that you should address before taking the exam. Take the second form of the practice exam after you have finished studying. Analyze your results to identify the areas that you still need to review.
Although there is no guarantee, our research suggests that students who do well on the practice exams are more likely to pass the actual exam than those who do not do well (or do not take advantage of this opportunity).

About Test Preparation Services

Preparation for UExcel® exams and Excelsior College® Examinations, though based on independent study, is supported by Excelsior College with a comprehensive set of exam learning resources and services designed to help you succeed. These learning resources are prepared by Excelsior College so you can be assured that they are current and cover the content you are expected to master for the exams. These resources, and your desire to learn, are usually all that you will need to succeed.

There are test-preparation companies that will offer to help you study for our examinations. Some may imply a relationship with Excelsior College and/or make claims that their products and services are all that you need to prepare for our examinations.

Excelsior College is not affiliated with any test preparation firm and does not endorse the products or services of these companies. No test preparation vendor is authorized to provide admissions counseling or academic advising services, or to collect any payments, on behalf of Excelsior College. Excelsior College does not send authorized representatives to a student’s home nor does it review the materials provided by test preparation companies for content or compatibility with Excelsior College examinations.

To help you become a well-informed consumer, we suggest that before you make any purchase decision regarding study materials provided by organizations other than Excelsior College, you consider the points outlined on our website at www.excelsior.edu/testprep.

Preparing for This Exam

Prior Knowledge

A familiarity with basic terms of biology and with concepts such as basic cell structure and function is assumed.

Using the Content Outline

Each content area in the outline includes (1) the recommended minimum hours of study to devote to that content area and (2) the most important sections of the recommended resources for that area. These annotations are not intended to be comprehensive. You may need to refer to other chapters in the recommended textbooks. *Chapter numbers and titles may differ in other editions.*

This content outline contains examples of the types of information you should study. Although these examples are numerous, do not assume that everything on the exam will come from these examples. Conversely, do not expect that every detail you study will appear on the exam. Any exam is only a broad sample of all the questions that could be asked about the subject matter.

Using the Sample Questions and Rationales

Each content guide provides sample questions to illustrate those typically found on the exam. These questions are intended to give you an idea of the level of knowledge expected and the way questions are typically phrased. The sample questions do not sample the entire content of the exam and are not intended to serve as an entire practice test.
Recommended Resources for the UExcel Exam in Anatomy and Physiology II

The study materials listed below are recommended by Excelsior College as the most appropriate resources to help you study for the examination. For information on ordering from the Excelsior College Bookstore, see page 1 of this guide. You may also find resource materials in college libraries. Public libraries may have some of the textbooks or may be able to obtain them through an interlibrary loan program.

You should allow sufficient time to obtain resources and to study before taking the exam.

Textbooks

The following textbook was used by the examination development committee to verify all questions on the exam. These study materials may be purchased from the Excelsior College Bookstore.

www.excelsior.edu/bookstore

NOTE: The textbook edition offered at the Excelsior College Bookstore is packaged with the following supplements:

- Fundamentals of Anatomy and Physiology–Access
- Human Anatomy and Physiology:
 - Interactive Physiology 10 System Suite features narrated flash animation tutorials, quizzes, and glossary.

Martini’s Atlas of the Human Body

Open Educational Resources

Carnegie Mellon U, open learning initiative
https://oli.cmu.edu/jcourse/webui/guest/join.do?section=anatomy

OER Commons – Open Stax textbook
https://www.oercommons.org/courses/anatomy-and-physiology-3

Reducing Textbook Costs

Many students know it is less expensive to buy a used textbook, and buying a previous edition is also an option. The Excelsior College bookstore includes a buyback feature and a used book marketplace, as well as the ability to rent digital versions of textbooks for as long as students need them. Students are encouraged to explore these and the many other opportunities available online to help defray textbook costs.
General Description of the Examination

The UExcel Anatomy and Physiology II examination is based on material typically taught in the second semester of a lower-level, two-course sequence in anatomy and physiology.

The examination measures knowledge and understanding of the integrative mechanisms that contribute to the functioning of the human body. Topics include the cardiovascular system and components of plasma, blood vessels and circulation, the lymphatic system and immunity, respiration and gas exchange, digestive structures and processes and metabolism and energetics, urinary system and electrolyte and acid-base balance, human reproduction and development, homeostatic structures, and the relationship between body systems and underlying structures.

Those beginning to study for this exam should be familiar with basic terms of biology, concepts such as cell structure and function, and the basic structure and organization of the body.

Learning Outcomes

Upon successful completion of this examination, the student will be expected to demonstrate the ability to

1. describe blood, the heart, and blood vessels.
2. describe the respiratory, lymphatic, and immune systems.
3. describe the digestive and urinary systems and the mechanisms of metabolism.
4. describe the fluid compartments and acid-base balance.
5. describe the function of the human reproductive system and its principal components, explain prenatal development, and the process of labor and delivery.
6. understand homeostatic mechanisms.
7. understand the relationship between body systems and underlying structures.
Content Outline

The content outline describes the various areas of the test, similar to the way a syllabus outlines a course. To fully prepare requires self-direction and discipline. Study involves careful reading, reflection, and systematic review.

The major content areas on the Anatomy and Physiology II examination, the percent of the examination devoted, and the hours to devote to each content area are listed below.

<table>
<thead>
<tr>
<th>Content Area</th>
<th>Percent of the Examination</th>
<th>Hours of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Blood and the Heart</td>
<td>20%</td>
<td>27</td>
</tr>
<tr>
<td>II. Circulation and the Lymphatic System</td>
<td>15%</td>
<td>20</td>
</tr>
<tr>
<td>III. Respiratory System</td>
<td>10%</td>
<td>14</td>
</tr>
<tr>
<td>IV. Digestive System and Metabolism</td>
<td>20%</td>
<td>27</td>
</tr>
<tr>
<td>V. Urinary System and Fluid & Electrolyte Balance</td>
<td>20%</td>
<td>27</td>
</tr>
<tr>
<td>VI. Reproduction and Development</td>
<td>15%</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Occasionally, examples will be listed for a content topic to help clarify that topic. However, the content of the examination is not limited to the specific examples given.

I. Blood and the Heart

20 PERCENT OF EXAM | 27 HOURS OF STUDY

Martini (2015)
- Ch. 19, Blood
- Ch. 20, The Heart

A. Blood

1. Characteristics: color, pH, temperature
2. Plasma: components and characteristics
 a. Water
 b. Proteins (albumin, globulin, fibrinogen)
 c. Salts
 d. Gases
 e. Nutrients
 f. Enzymes and hormones
 g. Waste products

3. Formed elements: characteristics, life cycle, number, function
 a. Red blood cells (for example: hemoglobin, red blood cell production and recycling)
 b. White blood cells (for example: neutrophils, eosinophils)
 c. Platelets

4. Hemostasis: vessel constriction, platelet plugging, coagulation (intrinsic and extrinsic)

5. Blood typing (agglutinins, agglutinogens)
a. ABO groups
b. Rh factor

B. The heart
1. Structure
 a. Layers: pericardium, endocardium, myocardium, epicardium
 b. Chambers: atria, ventricles
 c. Valves: tricuspid, bicuspid (mitral), aortic and pulmonic semilunar
 d. Pulmonary vs. systemic circulation (for example: superior vena cava, pulmonary trunk, aorta)
 e. Coronary circulation: coronary arteries, cardiac veins, coronary sinus

2. Function
 a. Properties of cardiac muscle: automaticity, intercellular conductivity (intercalated discs)
 b. Origin of heartbeat and conduction pathway
 1) Intrinsic (sinoatrial node, atrioventricular [AV] node, AV bundle, left and right bundle branches, Purkinje fibers)
 2) Extrinsic (vagal and cardiac nerve modulation)
 c. Cardiac cycle: phases (systole, diastole), pressure and volume changes, heart sounds, electrocardiogram (ECG)
 d. Control of cardiac output
 1) Stroke volume times heart rate
 2) Nervous control: parasympathetic vs. sympathetic
 3) Role of receptors: baroreceptors (atrial reflex)
 4) Factors affecting stroke volume (for example: preload, afterload)

II. Circulation and the Lymphatic System

15 PERCENT OF EXAM | 20 HOURS OF STUDY

Martini

Ch. 21, Blood Vessels and Circulation
Ch. 22, The Lymphatic System and Immunity

A. Circulatory system
1. Vessels: histology and function
 a. Arteries: layers, elastic arteries, muscular arteries, arterioles
 b. Veins: layers, valves, venules
 c. Capillaries: fenestrated, precapillary sphincters
 d. Functional differences

2. Major arteries and veins (for example: femoral artery, external jugular vein, median cubital vein)
 a. Location
 b. Relative oxygen and carbon dioxide levels (For example: the aorta is oxygenated)

3. Special circuits (for example: hepatic portal system, fetal)

B. Cardiovascular physiology
1. Capillary exchange
 a. Fluid exchange: a result of the balance between
 1) Hydrostatic pressure
 2) Osmotic pressure
 b. Diffusion (nutrients, gases)

2. Pressure dynamics: blood distribution to body organs and organ needs

3. Resistance to blood flow (for example: vasodilation, vasoconstriction, blood viscosity)

4. Regulation and maintenance of blood pressure
 a. Autoregulation
 b. Neural mechanisms (for example: chemoreceptors, baroreceptors)
III. Respiratory System

10 PERCENT OF EXAM | 14 HOURS OF STUDY

Martini

Ch. 23, The Respiratory System

A. Anatomy
1. Respiratory tract (conducting and respiratory portions — changes in histology)
2. Respiratory muscles: diaphragm and intercostals
3. Pleura (visceral and parietal layers)

B. Physiology
1. Compliance
2. Diffusion of gases: pressure (intraalveolar and intrapleural)
 a. Boyle’s Law
 b. Dalton’s Law
 c. Henry’s Law
3. Mechanisms of ventilation
 a. Inspiration
 b. Expiration
 c. Lung volumes and capacities (for example: tidal volume, inspiratory reserve volume, vital capacity)
4. Gas exchange and transport
 a. Oxygen transport
 b. Carbon dioxide transport
 c. Hemoglobin saturation curve
5. Control ventilation
 a. Nervous control
 1) Medulla oblongata (inspiration, expiration)
 2) Pons (apneustic area and pneumotaxic area)
 3) Lungs (Hering-Breuer reflex)
 b. Chemical control: pH, carbon dioxide, hypoxia
 c. Other controls: temperature change, pressure change, voluntary (cerebrum)

IV. Digestive System and Metabolism

20 PERCENT OF EXAM | 27 HOURS OF STUDY

Martini

Ch. 24, The Digestive System
Ch. 25, Metabolism and Energetics

A. Digestive system
1. Anatomy and functions of the alimentary canal
a. Microscopic anatomy (for example: submucosa, mucosa, Peyer's patches)

b. Gross anatomy
 1) Digestive tract from mouth to anus
 2) Accessory organs (for example: salivary glands, pancreas, liver)

2. Physiology of the digestive process
 a. Ingestion
 b. Mechanical processing
 1) Mastication
 2) Deglutition
 3) Peristalsis
 4) Segmentation
 5) Emulsification
 c. Chemical digestion: catalytic enzymes and hydrolysis of carbohydrates, lipids, proteins, nucleic acids
 d. Control of digestion
 1) Nervous control: autonomic nervous system (parasympathetic and sympathetic), myenteric and submucosal plexus
 2) Hormonal control (for example: gastrin, secretin, cholecystokinin)
 e. Secretion
 f. Absorption
 g. Excretion

B. Metabolism
 1. Nutrient metabolism of carbohydrates, proteins, and lipids
 a. Anabolism (for example: gluconeogenesis, lipogenesis, protein synthesis)
 b. Catabolism (for example: glycojenolysis, lipolysis, deamination)
 2. Energy metabolism (aerobic and anaerobic): role of enzymes and phosphorylation, citric acid [Krebs] cycle, oxidative phosphorylation, electron transport system, role of nicotinamide adenine dinucleotide [NAD] and flavin adenine dinucleotide [FAD] (Students are not responsible for the individual biochemical events of these processes.)
 3. Daily calorie requirement, nutritional needs, body heat
 4. Calorimetry: basal metabolic rate (BMR)
 5. Vitamins and minerals

V. Urinary System and Fluid & Electrolyte Balance

20 PERCENT OF EXAM | 27 HOURS OF STUDY

Martini

Ch. 26, The Urinary System
Ch. 27, Fluid, Electrolyte, and Acid-Base Balance

A. Urinary system
 1. Gross anatomy: kidney (capsule, pelvis, calyces, medulla, cortex, renal columns, renal pyramids), ureters, bladder, urethra, blood supply
 2. Microscopic anatomy:
 a. Nephron (renal corpuscle, podocytes, proximal convoluted tubule, nephron loop, distal convoluted tubule), collecting duct
 b. Blood vessels (peritubular capillaries, vasa recta)
 3. Nephron dynamics (homeostatic maintenance)
 a. Glomerular filtration
 1) Hydrostatic pressure
 2) Osmotic pressure
 b. Tubular reabsorption
 c. Tubular secretion
 d. Countercurrent multiplication
e. Control of glomerular filtration rate

1) Autoregulation
2) Juxtaglomerular complex (renin-angiotensin system)
3) Autonomic regulation

4. Hormonal control
 a. Antidiuretic hormone
 b. Aldosterone
 c. Atrial natriuretic peptide

5. Micturition reflex and voluntary control

6. Urine composition
 a. Physical characteristics: color, transparency, pH, specific gravity, quantity
 b. Constituents
 1) Inorganic (for example: water, potassium, calcium)
 2) Organic (for example: creatinine, urea, uric acid)

B. Fluid and electrolyte balance

1. Fluid compartments: distribution of water and electrolytes in the body
 a. Extracellular (interstitial fluid, plasma)
 b. Intracellular
 c. Important cations and anions (milliequivalents)

2. Regulation of fluids and electrolytes
 a. Water intake and output
 b. Adjustment of excess fluid intake
 c. Regulation by hormones
 d. Fluid gains and losses
 e. Electrolyte balance

C. Acid-base balance: normal pH range, pH regulation, sources of acid and base

1. Buffer systems
 a. Protein buffer
 b. Hemoglobin buffer
 c. Carbonic acid-bicarbonate buffer
 d. Phosphate buffer

2. Respiratory compensation
3. Renal compensation
4. Acid-base disturbances (for example: respiratory acidosis, metabolic alkalosis)

VI. Reproduction and Development

15 PERCENT OF EXAM | 20 HOURS OF STUDY

Martini
Ch. 28, The Reproductive System
Ch. 29, Development and Inheritance

A. Anatomy

1. Primary reproductive organs
 a. Male: testes
 b. Female: ovaries

2. Accessory reproductive organs
 a. Male: epididymis, ductus deferens, seminal vesicles, ejaculatory ducts, prostate gland, bulbourethral glands, urethra, penis
 b. Female: uterine tubes, uterus, vagina, greater vestibular glands, external genitalia

B. Physiology of reproductive system

1. Gametogenesis
 a. Spermatogenesis
 b. Oogenesis

2. Hormonal control
 a. Female: ovarian cycle, uterine cycle (follicle stimulating hormone [FSH], luteinizing hormone [LH], estrogen, progesterone)
 b. Male: spermatogenesis, gonadotropins (FSH, LH), testosterone

3. Nervous control
 a. Erection (parasympathetic)
 b. Ejaculation (sympathetic)

C. Development

1. Fertilization and implantation
2. Pregnancy
 a. Hormonal control: corpus luteum (estrogen, progesterone), placenta (human chorionic gonadotropin)
 b. Development
 1) First trimester
 a) Cleavage
 b) Implantation
 c) Gastrulation
 d) Placentation
 e) Embryogenesis
 2) Second trimester and third trimester
 a) Pregnancy and maternal systems
 b) Structural and functional changes in the uterus
 3. Parturition: stages, hormonal control (oxytocin, relaxin)
 4. Lactation: nervous and hormonal control, nutritional aspects
Sample Questions

The sample questions give you an idea of the level of knowledge expected in the exam and how questions are typically phrased. They are not representative of the entire content of the exam and are not intended to serve as a practice test.

Rationales for the questions can be found on pages 15–18 of this guide. In that section, the correct answer is identified and each answer is explained. The number in parentheses at the beginning of each rationale refers to the corresponding section of the content outline. For any questions you answer incorrectly, return to that section of the content outline for further study.

1. Which blood type has Rh antigens and A antibodies?
 1) A+
 2) A-
 3) B+
 4) B-

2. When does ejection of blood from the ventricles occur during an ECG trace?
 1) between the QRS and T waves
 2) right after the P wave
 3) between the T and P waves
 4) right after the T wave

3. During which phase of the cardiac cycle is the pressure in the aorta the highest?
 1) early atrial diastole
 2) atrial systole
 3) early ventricular diastole
 4) ventricular systole

4. In a normal heart, which of the following decreases cardiac output?
 1) increased stroke volume
 2) increased heart rate
 3) increased venous return to the heart
 4) increased parasympathetic stimulation of the heart

5. Which blood vessel carries oxygenated blood?
 1) azygos vein
 2) celiac trunk
 3) coronary sinus
 4) pulmonary trunk

6. Which structures carry blood that bypasses the fetal lungs?
 (Select the 2 that apply.)
 1) foramen ovale
 2) umbilical artery
 3) ductus venosus
 4) ductus arteriosus
 5) umbilical vein
7. Which statement best explains why stimulating the sympathetic nervous system will increase arterial blood pressure?
 1) Cardiac output will increase and total peripheral resistance will remain unchanged.
 2) Cardiac output will remain unchanged and total peripheral resistance will increase.
 3) Cardiac output will increase and stroke volume will decrease.
 4) Cardiac output and total peripheral resistance will both increase.

8. Which lymphoid tissue is found in the lining of the intestine?
 1) adenoids
 2) appendix
 3) palatine tonsils
 4) Peyer’s patches

9. Which condition increases lung compliance?
 1) emphysema
 2) severe kyphosis
 3) ossification of costal cartilage
 4) respiratory distress syndrome

10. What is the effect of the Hering-Breuer reflex?
 1) It controls the basic rhythm of respiration.
 2) It constricts terminal bronchioles.
 3) It stimulates inspiration.
 4) It prevents overinflation of the lungs.

11. Which cells of the digestive tract secrete pepsinogen?
 1) chief
 2) goblet
 3) parietal
 4) enteroendocrine

12. During cellular respiration, a diminished supply of oxygen will result in the storage of hydrogen as which acid?
 1) acetic
 2) citric
 3) lactic
 4) pyruvic

13. How many pyruvate molecules are formed for every 3 glucose molecules that are aerobically metabolized?
 1) 2
 2) 3
 3) 6
 4) 9

14. A deficiency in which vitamin could lead to an inability to properly stop bleeding?
 1) A
 2) D
 3) E
 4) K

15. Which is the correct pathway of filtrate through the nephron?
 1) Bowman’s capsule, proximal convoluted tubule, loop of Henle, distal convoluted tubule
 2) Bowman’s capsule, loop of Henle, proximal convoluted tubule, collecting tubule
 3) Bowman’s capsule, collecting tubule, proximal convoluted tubule, loop of Henle
 4) collecting tubule, Bowman’s capsule, loop of Henle, distal convoluted tubule

16. The renin-angiotensin mechanism regulates the production of which hormone?
 1) aldosterone
 2) cortisol
 3) glucagon
 4) insulin

17. What occurs in response to extracellular fluid (ECF) becoming hypertonic with respect to the intracellular fluid (ICF)?
 1) Water will not move.
 2) Water will move into the ICF.
 3) Water will move into the ECF.
 4) Water will move out of the ECF.
18. An increase in renal bicarbonate reabsorption would tend to have which effect on body fluids?
 1) increased acidity
 2) increased pH
 3) decreased buffering capacity
 4) decreased osmolarity

19. Which is the effect of afferent impulses from lactating breasts to the hypothalamus?
 1) Release of posterior pituitary hormones increases.
 2) Development of lactiferous ducts is inhibited.
 3) Milk let-down reflex is prevented.
 4) Prolactin levels increase.

20. Which hormone increases the reabsorption of sodium and the secretion of potassium by the kidney?
 1) aldosterone
 2) antidiuretic hormone (ADH)
 3) thyroxine
 4) cortisol

21. What is the main source of progesterone following degeneration of the corpus luteum during pregnancy?
 1) corpus albicans
 2) follicular epithelial cells
 3) placenta
 4) thecal cells
1. (IA5)
 1) A person with blood type A+ has Rh antigens, but does not have A antibodies.
 2) A person with blood type A- has neither Rh antigens nor A antibodies.
 *3) A person with blood type B+ has Rh antigens and A antibodies.
 4) A person with blood type B- has A antibodies, but does not have Rh antigens.

2. (IB2c)
 *1) The QRS wave reflects the spread of the impulse throughout the ventricles forcing blood into the aorta and pulmonary artery.
 2) The P wave represents the spread of an electrical impulse through the atria and their subsequent contraction.
 3) The T wave represents repolarization of the electrical tissue and the P wave represents the beginning of the next cardiac cycle.
 4) Right after the T wave, the heart is at rest.

3. (IB2c)
 1) In early atrial diastole, the atria are filling with blood from the venous system.
 2) Atrial systole involves contraction of the atria, forcing blood into the ventricles.
 3) In early ventricular diastole, the ventricles are receiving blood from the atria.
 *4) In ventricular systole, the ventricles are contracting and forcing blood into the aorta and pulmonary artery.

4. (IB2d)
 1) An increased stroke volume increases the amount of blood ejected from the ventricle.
 2) A more rapid heart rate increases the amount of blood forced out of the heart.
 3) As more blood returns to the heart, more blood is subsequently ejected.
 *4) The parasympathetic nervous system has an inhibitory effect on cardiac function.

5. (IIA2b)
 1) The azygos vein carries deoxygenated blood from the thorax and abdomen into the superior vena cava vein.
 *2) The celiac trunk carries oxygenated blood to the liver, stomach, and spleen.
 3) The coronary sinus is a thin-walled vein that carries deoxygenated blood into the right atrium.
 4) The pulmonary trunk carries deoxygenated blood into the left pulmonary arteries and the right pulmonary arteries.

*correct answer
6.(IIA3)

*1) Foramen ovale is an opening in the atrial septum which allows blood to flow from the right atrium into the left atrium, thus bypassing the fetal lungs.

2) Umbilical arteries carry fetal blood to the placenta. Although functionally these act like the pulmonary arteries in an individual after birth, they do not direct blood to bypass the fetal lungs.

3) Ductus venosus connects blood from the umbilical vein and veins from the fetal liver to the inferior vena cava.

*4) Ductus arteriosus is a short muscular vessel between the pulmonary artery and aorta that directs blood to bypass the fetal lungs.

5) The umbilical vein carries fetal blood away from the placenta.

7.(IIB4)

1) See 4).

2) See 4).

3) The sympathetic nervous system stimulation of the adrenal medulla releases epinephrine and norepinephrine which will cause an increase in cardiac output and an increase in stroke volume.

*4) The sympathetic nervous system stimulation of the adrenal medulla releases epinephrine and norepinephrine which will cause an increase in cardiac output and vasoconstriction in visceral blood vessels resulting in an increase in peripheral resistance.

8.(IIIC3)

1) The adenoids are large lymphoid nodules that are found in the posterior superior wall of the nasopharynx.

2) The appendix is a blind pouch that originates near the junction between the small and large intestines. Its walls contain a mass of fused lymphoid nodules.

3) The palatine tonsils are large lymphoid nodules that are located at the posterior, inferior margin of the oral cavity, along the boundary with the pharynx.

*4) Peyer's patches are clusters of lymphoid nodules deep to the epithelial lining of the intestine.

*correct answer

9.(IIIB1)

*1) Emphysema increases lung compliance because it results in a loss of supporting tissues due to alveolar damage.

2) A severe kyphosis reduces lung compliance by making it more difficult for the rib cage to expand.

3) Ossification of costal cartilage reduces lung compliance by making it more difficult for the rib cage to expand.

4) Respiratory distress syndrome reduces lung compliance due to the collapse of alveoli during exhalation as a result of inadequate surfactant.

10.(IIIB5a)

1) The basic rhythm of respiration is regulated by the medullary rhythmicity center which is located in the medulla oblongata.

2) Constriction of terminal bronchioles is caused by histamine.

3) Inspiration is part of the medullary rhythmicity center in the medulla oblongata and is stimulated by high CO2 levels, low O2 levels, and falling pH levels.

*4) Stretch receptors are found within the bronchioles and lung tissue. When the receptors are stretched, nerve signals are sent via the vagus nerve to the apneustic center and medullary rhythmicity center and further inspiration is inhibited. Therefore, the Hering-Breuer reflex protects the lungs from overinflation damage.

11.(IVA2e)

*1) Chief cells, which are plentiful near the base of a gastric gland, secrete pepsinogen which is an inactive proenzyme.

2) Goblet cells secrete mucous into the digestive tract.

3) Parietal cells secrete intrinsic factor and hydrochloric acid.

4) The stomach, the small intestine, and the large intestine (where absorption occurs) have simple columnar epithelium that contains mucous cells. Scattered among the columnar cells are enteroendocrine cells. They secrete hormones that coordinate the activities of the digestive tract and the accessory glands.
12. (IVB2)
1) Acetic acid is formed when pyruvic acid is decarboxylated and joined with CoA to enter the mitochondria during aerobic oxidation when the oxygen supply is adequate.
2) During aerobic oxidation, citric acid is formed in the mitochondria when the acetyl group of acetic acid is joined with oxaloacetic acid.
*3) When oxygen is inadequate, pyruvic acid is reduced by two hydrogen ions to form lactic acid. Lactic acid can be transported to the liver to be reformatted into glucose or pyruvic acid.
4) Pyruvic acid is the end product of anaerobic glycolysis.

13. (IVB2)
1) See 3).
2) See 3).
*3) During aerobic respiration, for every one glucose molecule, two pyruvate molecules are formed. Therefore, for every three glucose molecules, six pyruvate molecules would be formed.
4) See 3).

14. (IVB5)
1) Vitamin A maintains epithelia and is required for synthesis of visual pigments. It also supports the immune system and promotes growth and bone remodeling.
2) Vitamin D is required for normal bone growth, intestinal calcium and phosphorus absorption, and retention of these ions at the kidneys.
3) Vitamin E prevents the breakdown of vitamin A and fatty acids.
*4) Vitamin K is essential for liver synthesis of prothrombin and other clotting factors. Therefore, a deficiency in vitamin K could lead to an inability to properly stop bleeding.

15. (VA3)
*1) This represents the path by which the blood filtrate passes on the way to the final production of urine.
2) The loop of Henle transports the filtrate from the proximal convoluted tubule to the distal convoluted tubule.
3) The collecting tubule represents the end of the filtration process.
4) The collecting tubule represents the end point of the pathway.

16. (VA4)
*1) A decrease in blood volume leads the nephron juxtaglomerular cells to release renin. Renin converts angiotensinogen to angiotensin I. Angiotensin I is converted to angiotensin II in the lung. Angiostatin II stimulates the adrenal cortex to release aldosterone.
2) Cortisol is stimulated by pituitary ACTH.
3) Glucagon is produced in the alpha cells of the islets of Langerhans and is stimulated by epinephrine.
4) Insulin is produced in the beta cells of the islets of Langerhans and is stimulated by high blood glucose levels.

17. (VB2d)
1) See 3).
2) See 3).
*3) If the osmotic concentration of the ECF increases, that fluid will become hypertonic with respect to the ICF. Water will then move from the cells into the ECF until osmotic equilibrium is restored.
4) See 3).
18.(VC1)

1) Since bicarbonate absorbs H+, acidity will be reduced. Increased acidity is caused by an increase in H+.

*2) Increased pH is caused by a reduction of available H+. Bicarbonate absorbs H+, reducing the available H+ and causing pH to increase.

3) Bicarbonate is a component of the carbonic acid-bicarbonate buffer system. The more bicarbonate available, the greater the opportunity to absorb H+ and prevent a fall in pH.

4) Bicarbonate is a plasma solute. Any increase in solutes will increase osmolarity.

19.(VIC4)

1) Prolactin has no connection with the posterior pituitary.

2) Prolactin triggers the development of lactiferous ducts.

3) The milk let-down reflex is triggered, not prevented, by efferent impulses which cause the hypothalamus to release oxytocin.

*4) Impulses from a suckling infant induce an increase in prolactin production, thereby increasing milk production.

20.(VID1)

*1) Aldosterone from the adrenal cortex increases the retention of sodium and triggers the loss of potassium.

2) ADH from the posterior pituitary triggers the retention of water by the kidneys.

3) Thyroxine from the thyroid gland regulates cell metabolism.

4) Cortisol from the adrenal cortex elevates blood sugar and reduces inflammation.

21.(VIC2a)

1) A corpus albicans is a degenerated corpus luteum that has lost its capacity to produce progesterone.

2) Follicle cells are involved in producing estrogen and developing the secondary oocyte.

*3) The placenta is able to convert cholesterol to progesterone which is important to maintain the pregnancy after the corpus luteum degenerates.

4) Thecal cells surround the follicle and are involved in the secretion of steroids.

*correct answer
Registering for Your Exam

Register Online

www.excelsior.edu/examregistration
Follow the instructions and pay by Visa, MasterCard, American Express, or Discover Card.

Examination Administration

Pearson Testing Centers serve as the administrator for all Excelsior College computer-delivered exams. The Disability Services office at Excelsior College is responsible for considering requests for reasonable accommodations (exceptions for individual students with documented disabilities). If you are requesting an accommodation due to a disability, download and complete a Request for Accommodation form that can be accessed by visiting the Excelsior College website at www.excelsior.edu/disability-services.

Computer-Delivered Testing

You will take the exam by computer, entering your answers using either the keyboard or the mouse. The system is designed to be as user-friendly as possible, even for those with little or no computer experience. On-screen instructions are similar to those you would see in a paper examination booklet.

We strongly encourage you to use the online tutorial before taking your exam at a Pearson Testing Center. To access the tutorial, go to www.pearsonvue.com/uexcel and click on the Pearson VUE Tutorial link on the right hand side of the page.

On the Day of Your Exam

Important Reminders

On the day of your exam, remember to:

• dress comfortably: the computer will not mind that you’re wearing your favorite relaxation outfit

• arrive at the test site rested and prepared to concentrate for an extended period

• allow sufficient time to travel, park, and locate the test center

• be prepared for possible variations in temperature at the test center due to weather changes or energy conservation measures

• bring your ID, but otherwise, don’t weigh yourself down with belongings that will have to be kept in a locker during the test.

Academic Honesty

Nondisclosure Statement

• All test takers must agree to the terms of the Excelsior College Academic Honesty Policy before taking an examination. The agreement will be presented on screen at the Pearson VUE Testing Center before the start of your exam.

• Once the test taker agrees to the terms of the Academic Honesty Nondisclosure Statement, the exam will begin.

If you choose not to accept the terms of the agreement

• your exam will be terminated

• you will be required to leave the testing center
• you will not be eligible for a refund. For more information, review the Student Policy Handbook at www.excelsior.edu/studentpolicyhandbook.

Student behavior is monitored during and after the exam. Electronic measures are used to monitor the security of test items and scan for illegal use of intellectual property. This monitoring includes surveillance of Internet chat rooms, websites, and other public forums.

Information About UExcel Exams for Colleges and Universities

A committee of teaching faculty and practicing professionals determines the learning outcomes to be tested on each exam. Excelsior College Center for Educational Measurement staff oversee the technical aspects of test construction in accordance with current professional standards. To promote fairness in testing, we take special care to ensure that the language used in the exams and related materials is consistent, professional, and user friendly. Editorial staff perform systematic quantitative and qualitative reviews to ensure accuracy, clarity, and compliance with conventions of bias-free language usage.

Excelsior College, the test developer, recommends granting three (3) semester hours of lower-level undergraduate credit to students who receive a score equivalent to a letter grade of C or higher on this examination. This examination may be used to help fulfill a science requirement or as a free elective for all Excelsior College degree programs that allow free electives. It also partially fulfills the anatomy and physiology core requirement for the Excelsior College nursing degrees. Other colleges and universities may also recognize this examination as a basis for granting credit or advanced standing. Individual institutions set their own policies for the amount of credit awarded and the minimum acceptable score.

Anatomy and Physiology II Exam Development Committee

Melissa K. Boles, PhD
(Baylor College of Medicine, Cell and Molecular Biology, 2009)
Lecturer, The Sage Colleges

Stephanie M. Hutchins, PhD
(Capella University, Human Services, 2012)
Instructor, Maria College

Brian H. Jensen, PhD
(University of Delaware, Biology, 2001)
Associate Professor of Biology, College of St. Rose