Pathophysiology

CREDIT HOURS 3
LEVEL UPPER

EXAM CODE 354
CATALOG NUMBER BIOx410

PUBLISHED NOVEMBER 2017
The most current content guides are available at:
www.excelsior.edu/contentguides

PRACTICE EXAMS
SEE PAGE 1 FOR DETAILS

TAKE ADVANTAGE OF ONLINE
CONTENTS

Preparing for the Exam .. 1
Before You Choose This UExcel Exam 1
 Uses for the Examination .. 1
 Examination Length and Scoring .. 1
UExcel Exam Resources .. 1
 Excelsior College Bookstore .. 1
 UExcel Practice Exams .. 1
 Excelsior College Library ... 1
 Online Tutoring ... 2
 MyExcelsior Community ... 2
Preparing for UExcel Exams .. 2
 How Long Will It Take Me to Study? 2
 Study Tips ... 2
 Using UExcel Practice Exams ... 2
 About Test Preparation Services .. 3
Preparing for This Exam ... 3
 Prior Knowledge ... 3
 Using the Content Outline .. 3
 Using the Sample Questions and Rationales 3
Recommended Resources for the UExcel Exam in Pathophysiology .. 3
 Textbooks ... 3
 Supplemental Resources .. 4
 Open Educational Resources .. 4
 Reducing Textbook Costs .. 4
Content Outline ... 5
 General Description of the Examination 5
 Learning Outcomes ... 5
 Content Outline ... 6
Sample Questions ... 15
Content Chart for Specific Topics .. 18
Rationales ... 21
Taking the Exam .. 27
Registering for Your Exam .. 27
 Register Online .. 27
 Examination Administration ... 27
 Computer-Delivered Testing ... 27
On the Day of Your Exam .. 27
 Important Reminders ... 27
 Academic Honesty Nondisclosure Statement 27
 Information About UExcel Exams for Colleges and Universities .. 28
Pathophysiology Exam Development Committee 28
Before You Choose
This UExcel Exam

Uses for the Examination

- Excelsior College, the test developer, recommends granting three (3) semester hours of upper-level undergraduate credit to students who receive a letter grade of C or higher on this examination.
- Other colleges and universities also recognize this exam as a basis for granting credit or advanced standing.
- Individual institutions set their own policies for the amount of credit awarded and the minimum acceptable score.

Exam-takers who have applied to Excelsior College should ask their academic advisor where this exam fits within their degree program.

Exam-takers not enrolled in an Excelsior College degree program should check with the institution from which they wish to receive credit to determine whether credit will be granted and/or to find out the minimum grade required for credit. Those who intend to enroll at Excelsior College should ask an admissions counselor where this exam fits within their intended degree program.

Examination Length and Scoring

The examination consists of approximately 120 questions, most of which are multiple choice; for samples of all the item types on this exam, see the sample items in the back of this guide. Some items are unscored, pretest items. The pretest items are embedded throughout the exam and are indistinguishable from the scored items. You will have two (2) hours to complete the examination. Your score will be reported as a letter grade.

UExcel Exam Resources

Excelsior College Bookstore

The Excelsior College Bookstore offers recommended textbooks and other resources to help you prepare for UExcel exams.

The bookstore is available online at: www.excelsior.edu/bookstore

UExcel Practice Exams

The official UExcel practice exams are highly recommended as part of your study plan. Once you register for your UExcel exam, you are eligible to purchase the corresponding practice exam, which can be taken using any computer with a supported Web browser. Each practice exam includes two forms that you may take within a 180-day period.

Excelsior College Library

Enrolled Excelsior College students can access millions of authoritative resources online through the Excelsior College Library. Created through our partnership with the Sheridan Libraries of The Johns Hopkins University, the library provides access to journal articles, books, websites, databases, reference services, and many other resources. Special library
pages relate to the nursing degree exams and other selected exams. To access it, visit www.excelsior.edu/library (login is required).

Our library provides:

- 24/7 availability
- The world’s most current authoritative resources
- Help and support from staff librarians

Online Tutoring

Excelsior College offers online tutoring through SMARTTHINKING™ to connect with tutors who have been trained in a variety of academic subjects. To access SMARTTHINKING, go to www.excelsior.edu/smarthinking. Once there, you may download a copy of the SMARTTHINKING Student Handbook as a PDF.

MyExcelsior Community

MyExcelsior Community enables Excelsior College students and alumni to interact with their peers online. As members, students can participate in real-time chat groups, join online study groups, buy and sell used textbooks, and share Internet resources. Enrolled students have automatic access from their MyExcelsior page. Visit www.excelsior.edu/myexcelsiorcommunity.

Preparing for UExcel Exams

How Long Will It Take Me to Study?

A UExcel exam enables you to show that you’ve learned material comparable to one or more 15-week college-level courses. As an independent learner, you should study and review as much as you would for a college course. For a 3-credit course in a subject they don’t know, most students would be expected to study nine hours per week for 15 weeks, for a total of 135 hours.

Study Tips

Become an active user of the resource materials. Aim for understanding rather than memorization. The more active you are when you study, the more likely you will be to retain, understand, and apply the information.

The following techniques are generally considered to be active learning:

- **preview or survey** each chapter
- **highlight or underline text** you believe is important
- **write questions or comments** in the margins
- **practice re-stating content** in your own words
- **relate what you are reading** to the chapter title, section headings, and other organizing elements of the textbook
- **find ways to engage** your eyes, your ears, and your muscles, as well as your brain, in your studies
- **study with a partner or a small group** (if you are an enrolled student, search for partners on MyExcelsior Community)
- **prepare your review notes** as flashcards or create recordings that you can use while commuting or exercising

When you feel confident that you understand a content area, review what you have learned. Take a second look at the material to evaluate your understanding. If you have a study partner, the two of you can review by explaining the content to each other or writing test questions for each other to answer. Review questions from textbook chapters may be helpful for partner or individual study, as well.

Using UExcel Practice Exams

We recommend taking the first form of the practice exam when you begin studying, to see how much you already know. After taking the first practice exam, check your performance on each question and find out why your answer was right or wrong. This feedback will help you improve your knowledge of the subject and identify areas of weakness that you should address before taking the exam. Take the second form of the practice exam after you have finished studying. Analyze your results to identify the areas that you still need to review.

Although there is no guarantee, our research suggests that students who do well on the practice exams are more likely to pass the actual exam than those who do not do well (or do not take advantage of this opportunity).
About Test Preparation Services

Preparation for UExcel® exams and Excelsior College® Examinations, though based on independent study, is supported by Excelsior College with a comprehensive set of exam learning resources and services designed to help you succeed. These learning resources are prepared by Excelsior College so you can be assured that they are current and cover the content you are expected to master for the exams. These resources, and your desire to learn, are usually all that you will need to succeed.

There are test-preparation companies that will offer to help you study for our examinations. Some may imply a relationship with Excelsior College and/or make claims that their products and services are all that you need to prepare for our examinations.

Excelsior College is not affiliated with any test preparation firm and does not endorse the products or services of these companies. No test preparation vendor is authorized to provide admissions counseling or academic advising services, or to collect any payments, on behalf of Excelsior College. Excelsior College does not send authorized representatives to a student’s home nor does it review the materials provided by test preparation companies for content or compatibility with Excelsior College examinations.

To help you become a well-informed consumer, we suggest that before you make any purchase decision regarding study materials provided by organizations other than Excelsior College, you consider the points outlined on our website at www.excelsior.edu/testprep.

Preparing for This Exam

Prior Knowledge

A familiarity with microbiology and normal anatomy and physiology is assumed. A familiarity with concepts of biochemistry and immunology would also be useful.

Using the Content Outline

Each content area in the outline includes (1) the recommended minimum hours of study to devote to that content area and (2) the most important sections of the recommended resources for that area. These annotations are not intended to be comprehensive.

You may need to refer to other chapters in the recommended textbooks. Chapter numbers and titles may differ in other editions.

This content outline contains examples of the types of information you should study. Although these examples are numerous, do not assume that everything on the exam will come from these examples. Conversely, do not expect that every detail you study will appear on the exam. Any exam is only a broad sample of all the questions that could be asked about the subject matter.

Using the Sample Questions and Rationales

Each content guide provides sample questions to illustrate those typically found on the exam. These questions are intended to give you an idea of the level of knowledge expected and the way questions are typically phrased. The sample questions do not sample the entire content of the exam and are not intended to serve as an entire practice test.

Recommended Resources for the UExcel Exam in Pathophysiology

The study materials listed below are recommended by Excelsior College as the most appropriate resources to help you study for the examination. For information on ordering from the Excelsior College Bookstore, see page 1 of this guide. You may also find resource materials in college libraries. Public libraries may have some of the textbooks or may be able to obtain them through an interlibrary loan program.

You should allow sufficient time to obtain resources and to study before taking the exam.

Textbooks

This textbook was used by the examination development committee to verify all questions on the exam.

NOTE: A person who has upper-level knowledge in the field of Pathophysiology (as evidenced by having passed this exam) should be able to say the many technical terms correctly. The companion CD bound into this textbook includes a glossary with correct pronunciation.

Study Guide:

Study aids include chapter overviews, definitions of key terms, highlighted key concepts, chapter summaries, and Web site resources. The accompanying study guide includes many practice questions keyed to the textbook, as well as review exercises and additional Web site listings.

Supplemental Resources
To further assist you in learning the content, the exam development committee suggests that you supplement your understanding of specific topics or concepts related to the content outlined earlier by using at least one of the additional textbooks listed below, in conjunction with the CONTENT CHART FOR SPECIFIC TOPICS on pages 19–21. You may be able to locate the resource(s) you prefer to use through a public or college library.

Open Educational Resources
The Saylor Foundation provides free, high quality courses through online, self-paced, free learning resources.

Saylor Foundation: Pathobiology
http://www.saylor.org/courses/bio402/

Reducing Textbook Costs
Many students know it is less expensive to buy a used textbook, and buying a previous edition is also an option. The Excelsior College bookstore includes a buyback feature and a used book marketplace, as well as the ability to rent digital versions of textbooks for as long as students need them. Students are encouraged to explore these and the many other opportunities available online to help defray textbook costs.
Content Outline

General Description of the Examination

The UExcel Pathophysiology examination is based on material typically taught in a one semester, three-credit, upper-level course in pathophysiology.

The examination measures understanding of the physiologic mechanisms altered by disease in the living organism, focusing on the altered health states of adults, and includes clinical presentations, signs and symptoms, appropriate diagnostic studies, and global concepts of treatment.

Those beginning to study for this exam should be familiar with concepts generally covered in lower-level courses in normal anatomy and physiology and microbiology, and should also have an awareness of the basic concepts of biochemistry and immunology.

Learning Outcomes

After you have successfully worked your way through the recommended study materials, you should be able to demonstrate the following learning outcomes:

1. Describe cell biology, mechanisms of injury, types of cellular adaptation, genetic disorders, and neoplasia.
2. Identify the various forms of host defense and hematological responses.
3. Describe cardiac excitation and disturbance, valvular dysfunction, cardiac mechanisms, heart failure, atherosclerosis, hypertension, heart disease, shock, and infection.
4. Describe respiratory dysfunctions, such as obstructions, restrictions, cardiovascular lung diseases, altered gas exchange, respiratory failure, infection, neoplasia, and related risk factors.
5. Describe renal dysfunctions, including fluid, acid, and electrolyte imbalance, acute and chronic renal failure, end-stage renal disease, nephrosis, neoplasia, and stone formations.
6. Describe and explain the related diseases of the neurological and musculoskeletal systems, including head and neck trauma; seizures; vascular insult; infections/inflammation; altered neural-physiological, neuro-muscular, and musculoskeletal functions; pain; and neoplasia.
7. Describe gastrointestinal dysfunctions, nutrition imbalances, and related disorders such as compromised motility and absorption, diseases related to peptic ulcers and inflamed bowel, and pancreatic and hepatic/gallbladder disorders.
8. Describe diseases of the endocrine system, such as those related to hypothalamic-pituitary function, thyroid and parathyroid dysfunction, and altered adrenal function.
9. Given a clinical scenario, recognize the signs and symptoms of a particular physical disorder.
10. Identify and apply knowledge of diagnostic studies for a variety of system dysfunctions, including recognizing normal lab values.
11. Identify and apply treatment for various clinical diagnoses.
Content Outline

The content outline describes the various areas of the test, similar to the way a syllabus outlines a course. To fully prepare requires self-direction and discipline. Study involves careful reading, reflection, and systematic review.

The major content areas on the Pathophysiology examination, the percent of the examination devoted, and the hours to devote to each content area are listed below.

<table>
<thead>
<tr>
<th>Content Area</th>
<th>Percent of the Examination</th>
<th>Hours of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Cell Biology/Mechanisms of Cell Injury/Neoplasia</td>
<td>10%</td>
<td>14</td>
</tr>
<tr>
<td>II. Host Defense/Hematology</td>
<td>16%</td>
<td>22</td>
</tr>
<tr>
<td>III. The Cardiovascular System</td>
<td>15%</td>
<td>20</td>
</tr>
<tr>
<td>IV. The Respiratory System</td>
<td>11%</td>
<td>15</td>
</tr>
<tr>
<td>V. The Renal System/Fluids and Electrolytes/Acid-Base</td>
<td>12%</td>
<td>16</td>
</tr>
<tr>
<td>VI. Neurology and the Musculoskeletal System</td>
<td>10%</td>
<td>14</td>
</tr>
<tr>
<td>VII. The Gastrointestinal System/Nutrition/The Endocrine System/The Reproductive System</td>
<td>16%</td>
<td>22</td>
</tr>
<tr>
<td>VIII. Clinical Applications Related to the Various Systems</td>
<td>10%</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Occasionally, examples will be listed for a content topic to help clarify that topic. However, the content of the examination is not limited to the specific examples given.

I. Cell Biology/Mechanisms of Cell Injury/Neoplasia

10 PERCENT OF EXAM | 14 HOURS OF STUDY

Copstead (2013)

Unit I, Pathophysiologic Processes
Unit II, Cellular Function

A. Cellular adaptation
 1. Atrophy

2. Hypertrophy
3. Hyperplasia
4. Metaplasia
5. Dysplasia

B. Cellular injury
 1. Reversible (for example: swelling)
 2. Irreversible
 a. Necrosis
 b. Apoptosis
 c. Fatty changes
 3. Mechanisms
 a. Hypoxia
 b. Hyperoxia/free radicals
 c. Nutritional deficits
 d. Chemical injury
e. Infectious agents
f. Physical and mechanical injury (trauma)

4. Intracellular accumulation (for example: Tay-Sachs, glycogen storage, hemochromatosis)

C. Genetic disorders
1. Chromosomal abnormalities (for example: Down syndrome)
2. Mutations (for example: sickle cell anemia, thalassemias, cystic fibrosis)

D. Neoplasia
1. Nomenclature/classification/naming of neoplasias
 a. Characteristics of benign neoplasms
 b. Characteristics of malignant neoplasms
 c. Mechanisms of metastasis
2. Mechanisms of oncogenesis
 a. Viral oncogenesis
 1) Oncogenes
 2) Tumor suppressor genes
 b. Radiation-induced oncogenesis (for example: UV radiation)
 c. Chemical-induced oncogenesis (for example: cigarette smoking, asbestos)
3. Tumor markers
 a. Prostate-specific antigen (PSA)
 b. α-fetoprotein (AFP)
 c. Carcinoembryonic antigen (CEA)
4. Effects of the tumor on the host
 a. Paraneoplastic syndromes
 b. Thrombosis/hemorrhage
 c. Pain

II. Host Defense/Hematology

16 PERCENT OF EXAM | 22 HOURS OF STUDY

Copstead

Unit III, Defense

Unit XV, Integumentary System

A. Alterations in integument function
1. Mechanical barriers
 a. Burns
 b. Trauma (for example: abrasions)
2. Disorders of the skin
 a. Inflammatory response (for example: psoriasis, acne, lupus)
 b. Allergic response
 c. Neoplastic (for example: basal cells, malignant melanoma, and associated risk factors such as fair skin, UV light exposure, heredity, moles, etc.)

B. Inflammation
1. Local manifestation (chemical/cellular response)
 a. Acute (hemodynamic changes and inflammatory mediators)
 b. Chronic (granuloma and inflammatory mediators)
 c. Healing
 d. Exudates
2. Systemic manifestation
 a. Chemical/cellular response
 b. Fever/pain
 c. Global immune response

C. Alterations in wound healing
1. Dysfunction in inflammatory response
2. Nutritional factors
3. Congenital factors
4. Complicating factors (for example: diabetes, autoimmune)
5. Impaired perfusion (for example: surgical wounds, stasis and decubitus ulcers)

D. Alterations in immune function

1. Primary immune deficiencies (congenital)
 a. Severe combined immunodeficiency
 b. Wiskott-Aldrich syndrome
 c. T-cell disorders
d. B-cell disorders

2. Secondary immune deficiencies (acquired)
 a. HIV
 b. AIDS
c. Iatrogenic immune deficiency (for example: trauma, stress, chemo-radiation)

3. Autoimmunity disease
 a. Localized (for example: Graves’ disorder, Hashimoto’s thyroiditis)
b. Generalized or systemic (for example: lupus scleroderma)

4. Hypersensitivity reactions
 a. Type I: atopic hypersensitivity or anaphylactic allergic reaction
 b. Type II: cytotoxic or cytolytic hypersensitivity
c. Type III: immune complex or Arthus reaction
d. Type IV: delayed hypersensitivity

5. Immunization/vaccination
 a. Active
 b. Passive
c. Immunomodulating agents/adjuvants (for example: BCG – bacille Calmette-Guérin colony stimulating factors)
d. Immunotherapy (for example: interferon, monoclonal antibodies)

6. Immunocompromised host
 a. Etiology

1) Primary, such as HIV and diabetes
2) Secondary due to chemotherapy or steroid therapy
b. Risks (for example: opportunistic infections)
c. Preventive measures (for example: avoiding crowds in flu season)

7. Transplantation reactions
 a. Graft-versus-host disease (GvHD)
b. Rejection
c. Blood transfusion reactions

E. Alterations in the hematological system

1. Disorders of red blood cells
 a. Anemia
 1) Due to decreased RBC production (for example: iron deficiency, vitamin B12 and folic acid deficiencies)
 2) Due to blood loss
 3) Due to increased destruction (for example: hemolytic anemia, sickle cell anemia)
 b. Polycythemia
 1) Primary
 2) Secondary

2. Disorders of white blood cells
 a. Leukopenia
 b. Leukocytosis
c. Leukemia
 1) Acute lymphocytic
 2) Chronic lymphocytic
 3) Acute myelogenous
 4) Chronic myelogenous
d. Multiple myeloma

3. Disorders of platelets
 a. Thrombocytopenia
 b. Alterations in platelet function

4. Disorders of plasma and hemostasis
 a. Nutritional deficiencies
b. Hemophilia A

c. Hemophilia B

d. Other coagulation deficiencies (for example: vitamin K deficiency)

e. Factors predisposing to thrombosis

f. Clinical determination of coagulation value

g. Disseminated intravascular coagulation (DIC)

III. The Cardiovascular System

15 PERCENT OF EXAM | 20 HOURS OF STUDY

Copstead

Unit V, Cardiac Function

A. Cardiac excitation/rhythmic disturbances

1. Action potentials (fast response/slow response)

2. Disorders of conduction

 a. Atrial (for example: tachycardia)

 b. Ventricular (for example: tachycardia, bradycardia)

3. Enhanced automaticity/ectopy (for example: PVC)

4. Re-entry (for example: SVT)

5. Abnormal conduction pathways (for example: heart block, Wolff-Parkinson-White syndrome)

B. Valvular function/dysfunction

1. Mitral stenosis/regurgitation

2. Aortic stenosis/regurgitation

3. Tricuspid/pulmonic disease

C. Cardiac mechanics/heart failure

1. Congestive heart failure

 a. Etiology

 b. Basic mechanism

 c. Compensatory responses

 d. Clinical manifestations

 1) Right-sided heart failure

2) Left-sided heart failure

3) Backward failure (low-output failure) vs. forward failure (high-output failure)

2. Cardiogenic shock

3. Transplant

D. Atherosclerosis

1. Risk factors

2. Vascular disease

3. Coronary artery disease

 a. Clinical presentation/angina

 b. Cardiac ischemia

 c. Cardiac injury

 d. Cardiac infarct

 e. Complications/sequelae

E. Hypertension

1. Renin-angiotensin-aldosterone system

2. Risk factors

3. Classification

 a. Primary

 b. Secondary

4. End organ effects (for example: left ventricular hypertrophy)

F. Congenital heart disease

1. Acyanotic defects (for example: septal defects)

2. Cyanotic defects (for example: tetralogy of Fallot)

G. Pericardial disease

1. Effusion

2. Pericarditis

H. Peripheral vascular disease

1. Arterial

 a. Occlusive arterial disease

 b. Aneurysmal arterial disease

 c. Aortic dissection

2. Venous

 a. Thromboembolic venous disease

 b. Superficial thrombophlebitis
c. Acute deep vein thrombosis

d. Varicose veins

I. Embolic disease
1. Etiology
2. Sequelae

J. Shock
1. Hypovolemic
2. Septic

K. Infection
1. Rheumatic heart disease
2. Infective endocarditis

IV. The Respiratory System

A. Obstructive diseases
1. Chronic obstructive pulmonary disease (COPD)
 a. Asthma
 1) Extrinsic
 2) Intrinsic
 b. Chronic bronchitis
 c. Emphysema
2. Bronchiectasis
3. Cystic fibrosis

B. Restrictive diseases
1. Extrinsic
 a. Pneumothorax
 b. Pleural effusion
 c. Kyphoscoliosis
 d. Ankylosing spondylitis
 e. Neuromuscular disease
 1) Guillain-Barré syndrome
 2) Myasthenia gravis
 f. Pickwickian syndrome/sleep apnea
2. Intrinsic
 a. Sarcoïdosis
 b. Pulmonary fibrosis
 (for example: pneumoconiosis)

C. Cardiovascular diseases of the lung
1. Pulmonary embolism
2. Pulmonary hypertension
3. Cor pulmonale

D. Alterations in gas exchange
1. Hypoxemia
2. Hypoxia
3. Hypercapnia
4. Ventilation-perfusion mismatch

E. Respiratory failure
1. Acute respiratory failure
2. Adult respiratory distress syndrome (ARDS)
3. Infant respiratory distress syndrome

F. Infection
1. Atelectasis
2. Pneumonia (for example: bacterial, viral, pneumocystis)
3. Tuberculosis

G. Neoplasia
1. Small (oat) cell
2. Large cell
3. Squamous cell
4. Adenocarcinoma
5. Oral laryngeal cancer/bronchogenic cancer

H. Risk factors
V. The Renal System/Fluids and Electrolytes/Acid-Base

12 PERCENT OF EXAM | 16 HOURS OF STUDY

Copstead

Unit VII, Fluid, Electrolyte, and Acid-Base Homeostasis
Unit VIII, Renal and Bladder Function

A. Fluid imbalance
 1. Control of fluid volume
 2. Deficit
 3. Excess

B. Electrolyte imbalance, including etiology, effect, and clinical manifestation of imbalances in the following:
 1. Potassium
 2. Sodium
 3. Calcium
 4. Magnesium
 5. Phosphate
 6. Chloride

C. Acid-base imbalance
 1. Acidosis
 2. Alkalosis
 3. Buffers
 4. Compensatory mechanisms

D. Acute renal failure
 1. Prerenal
 2. Intrarenal
 3. Postrenal

E. Chronic renal failure
 1. Electrolyte imbalances
 2. Physiological changes
 3. Dialysis
 4. Transplant

F. End-stage renal disease

G. Infection
 1. Pyelonephritis

H. Disorders of the bladder
 1. Cystitis
 2. Neurogenic bladder

I. Nephrotic syndrome

J. Neoplasia

K. Stone formation

VI. Neurology and the Musculoskeletal System

10 PERCENT OF EXAM | 14 HOURS OF STUDY

Copstead

Unit XII, Neural Function
Unit XIV, Musculoskeletal Support and Movement

A. Traumatic injury
 1. Head
 a. Blunt trauma (concussion)
 b. Increased intracranial pressure (cerebral edema)
 c. Hematoma
 d. Craniofacial trauma
 2. Spinal cord: Mechanisms of injury
 a. Spinal shock
 b. Autonomic dysreflexia
 c. Chronic injury consideration

B. Seizure disorders
 1. Epilepsy
 a. Partial (focal) (for example: temporal lobe)
 b. Generalized (absence [petit mal] and tonic-clonic [grand mal]) seizures
 c. Status epilepticus
 2. Other (drug, febrile, traumatic, tumor)

C. Vascular insult
 1. Cerebrovascular accident (CVA)
 a. Hemorrhagic
b. Thromboembolic

c. AV malformations and aneurysms

2. Transient ischemic attack (TIA)

D. Infections/inflammation

1. Meningitis
2. Guillain-Barré syndrome
3. Encephalitis
4. Reye’s syndrome
5. Polio
6. Abscess

E. Alterations in neural psychological function

1. Alzheimer’s disease
2. Psychotic illness (for example: schizophrenia, major affective disease, delusional disorder)
3. Nonpsychotic illness (for example: anxiety disorders, personality disorders)

F. Alterations in neuromuscular function

1. Parkinson’s disease
2. Multiple sclerosis
3. Myasthenia gravis
4. Amyotrophic lateral sclerosis (ALS)

G. Pain

1. Types of pain
2. Pain assessment
3. Mechanisms (pathways)
4. Endorphins-opioid receptors
5. Management of pain

H. Alterations of the musculoskeletal system

1. Muscle disorders
 a. Muscular dystrophy
 b. Myopathies
2. Joint disorders
 a. Noninflammatory joint disorders, such as osteoarthritis
 b. Inflammatory joint disorders
 1) Noninfectious joint disorders

 (a) Rheumatoid arthritis
 (b) Ankylosing spondylitis
 (c) Gout
 (d) Psoriatic arthritis

2) Infectious joint disorders
 a. Septic arthritis
 b. Lyme disease

3. Bone disorders
 a. Osteomyelitis
 b. Paget’s disease
 c. Osteoporosis
 d. Osteomalacia
 e. Rickets
 f. Trauma (for example: fractures)
 1) Complete – closed, open, comminuted
 2) Incomplete – greenstick, stress
 3) Dislocation/subluxation

I. Neoplasia

1. Tumors of the brain and spinal cord (for example: gliomas, meningiomas, neurofibroma, angioma)
2. Tumors of the skeletal system (for example: osteosarcoma, fibrosarcoma)
3. Tumors of the muscular system (for example: rhabdomyosarcoma)

VII. The Gastrointestinal System/Nutrition/The Endocrine System/The Reproductive System

16 PERCENT OF EXAM | 22 HOURS OF STUDY

Copstead

Unit IX, Genital and Reproductive Function
Unit X, Gastrointestinal Function
Unit XI, Endocrine Function, Metabolism, and Nutrition

A. Disorders of motility

1. Nausea and vomiting
2. Achalasia (cardiospasm)
3. Reflux esophagitis/gastroesophageal reflux disease (GERD)
4. Hiatal hernia
5. Diarrhea/constipation

B. Disorders of absorption
1. Malabsorption syndromes
2. Sprue (celiac disease)

C. Peptic ulcer disease
1. Types
 a. Gastric
 b. Duodenal
2. Pathogenesis (for example: back diffusion, *Helicobacter pylori*)
3. Clinical manifestations

D. Inflammatory bowel disease
1. Ulcerative colitis/Crohn's disease
2. Pathogenesis
3. Clinical manifestations

E. Hepatic/gallbladder disorders
1. Jaundice (prehepatic such as hemolytic, intrahepatic, posthepatic)
2. Viral hepatitis
3. Cirrhosis
 a. Necrotic
 b. Toxic
 c. Alcoholic
 d. Pathogenetic
4. Cholecystitis/cholelithiasis
5. Clinical manifestations
 a. Liver disease
 b. Gallbladder disease
 c. Alcoholism

F. Disorders of the pancreas
1. Exocrine (pancreatitis – acute and chronic)
2. Endocrine – Diabetes mellitus
 a. Risk factors
 b. Insulin-dependent (type 1) vs. noninsulin-dependent (type 2)
 c. Long-term effects
 d. Complications such as diabetic ketoacidosis

G. Alterations of hypothalamic-pituitary function
1. Panhypopituitarism (Simmonds’ disease, Sheehan’s syndrome)
2. Pituitary adenoma and consequences
3. Acromegaly and galactorrhea/amenorrhea
4. Diabetes insipidus
5. Syndrome of inappropriate ADH secretion

H. Alterations of thyroid function and parathyroid function
1. Thyrotoxicosis (hyperthyroidism)
2. Graves’ disease
3. Toxic nodular goiter
4. Hashimoto’s thyroiditis
5. Complications resulting from T₄/T₃ excess and deficiency
6. Hyperparathyroidism (primary and secondary)
7. Hypoparathyroidism

I. Alterations of adrenal function (cortex and medulla)
1. Cushing's syndrome
2. Addison’s disease
3. Aldosteronism and primary hyperaldosteronism
4. Androgen excess/virilization (adrenal-genital hyperplasia)
5. Pheochromocytoma
6. Drug-induced alteration (for example: steroids)

J. Female reproductive system
1. Endometriosis
2. Amenorrhea/dysmenorrhea
3. Leiomyomas
4. Fibrocystic breast disease
5. Infertility
6. Ovarian cysts

K. Male reproductive system
 1. Hypogonadism
 2. Cryptorchidism
 3. Benign prostatic hyperplasia
 4. Infertility

VIII. Clinical Applications Related to the Various Systems

 10 percent of exam | 14 hours of study

Copstead
 Review all Units already cited

A. Signs and symptoms (patient clinical presentation)
 Pain — significance for all systems
 Jaundice — significance for GI, etc.

B. Diagnostic studies, including normal values
 For hematology — transfusion reaction
 For cardiovascular — cardiac enzymes
 For renal — urinalysis
 For GI, etc. — direct and indirect bilirubin, amylase, lipase, liver enzymes, blood sugar, hormones
 For neurology, etc. — Glasgow Coma Scale, brain stem function

C. Treatment
 For hematology — blood transfusion, anti-coagulation therapy, thrombolytic therapy
 For respiratory — bronchodilators
 For cardiovascular — lifestyle modification, diet, exercise
 For renal — fluid intake, dialysis
 For GI, etc. — H₂ blockers, Pepto-Bismol
 For neurology, etc. — hormone replacement therapy, calcium supplements
Sample Questions

The sample questions give you an idea of the level of knowledge expected in the exam and how questions are typically phrased. They are not representative of the entire content of the exam and are not intended to serve as a practice test.

Rationales for the questions can be found on pages 21–26 of this guide. In that section, the correct answer is identified and each answer is explained. The number in parentheses at the beginning of each rationale refers to the corresponding section of the content outline. For any questions you answer incorrectly, return to that section of the content outline for further study.

1. What process occurs in endocrine-dependent organs when hormonal stimulation decreases?
 1) atrophy
 2) dysplasia
 3) hyperplasia
 4) hypertrophy

2. Which cells are capable of hyperplastic growth?
 1) cardiac muscle
 2) epithelial
 3) nerve
 4) skeletal muscle

3. A patient with carrier status for cystic fibrosis marries another person with carrier status for the disease. What are the consequences for the children of this couple?
 1) All of their children will be carriers.
 2) Some of their children will have the disease, others will carry the trait, and others will not have the disease.
 3) All of their children will either carry the trait or present with the disease.
 4) None of the children will be affected, as the disorder skips every other generation.

4. Why are corticosteroids used to treat skin disorders such as seborrheic dermatitis?
 1) to reduce inflammation
 2) to minimize pain
 3) to enhance collagen production
 4) to prevent infection

5. Which factor is related to a high incidence of malignant melanoma?
 1) steroid hormone activity
 2) excess solar radiation
 3) long-term antibiotic use
 4) fungal infection

6. Hyperthyroidism, an enlarged thyroid gland, and exophthalmos are symptoms associated with which disorder?
 1) myxedema
 2) myasthenia gravis
 3) Hashimoto’s disease
 4) Graves’ disease

7. Angioedema, bronchial wheezing, and cutaneous itching within minutes of exposure to an allergen are typical of which type of hypersensitivity reaction?
 1) type I: anaphylactic
 2) type II: cytotoxic
 3) type III: immune complex
 4) type IV: delayed
8. What is the major distinguishing characteristic of Mobitz type I (Wenckebach) second degree heart block?
 1) Impulses are not conducted from the atria to the ventricles and a ventricular escape rhythm is present.
 2) P waves are nonconducted and there is a consistent P-R interval.
 3) There is a prolonged P-R interval, but each P wave is associated with a QRS complex.
 4) There is a progressively lengthening P-R interval until one P wave is not conducted.

9. Preload, afterload, contractility, and heart rate affect which action in the cardiovascular system?
 1) cardiac cycle
 2) myocardial conduction
 3) cardiac output
 4) atrial systole

10. What congenital circulatory problem results in the bypassing of the lungs and the recirculating of blood into the pulmonary circuit?
 1) patent foramen ovale
 2) ventricular septal defect
 3) transposition of the great arteries
 4) atrioventricular septal defect

11. Chest pain, friction rub, and serial electrocardiogram (ECG) abnormalities are found in which disorder?
 1) myocardial infarction
 2) angina pectoris
 3) cardiac tamponade
 4) acute pericarditis

12. Chronic dilation of the medium-sized bronchi and bronchioles is most likely to be associated with which disease?
 1) bronchiectasis
 2) emphysema
 3) chronic bronchitis
 4) cystic fibrosis

13. What is the primary mode of transmission of tuberculosis (TB)?
 1) airborne droplets
 2) contaminated blood
 3) fecal-oral contamination
 4) sexual contact

14. Which is an accurate statement regarding extracellular fluid volume deficit?
 It is the result of
 1) addition of sodium into the body.
 2) removal of a sodium-containing fluid from the body.
 3) excessive aldosterone secretion in the body.
 4) inadequate sodium and water losses from the body.

15. What blood test results are consistent with a diagnosis of respiratory acidosis?
 1) PaO₂ 65 mm Hg; PaCO₂ 58 mm Hg; pH 7.1; anion gap 8 mEq/L
 2) PaO₂ 99 mm Hg; PaCO₂ 25 mm Hg; pH 7.2; anion gap 25 mEq/L
 3) PaO₂ 100 mm Hg; PaCO₂ 29 mm Hg; pH 7.7; anion gap 10 mEq/L
 4) PaO₂ 94 mm Hg; PaCO₂ 50 mm Hg; pH 7.5; anion gap 7 mEq/L

16. Which of the following can be expected in the late stages of chronic renal failure when the glomerular filtration rate (GFR) declines to 25%?
 1) hypocalcemia and phosphaturia
 2) hypercalcemia and decreased calcium deposition
 3) hypocalcemia and phosphate retention in kidneys
 4) hypercalcemia and decreased serum calcium levels

17. A painless chancre is the most common symptom associated with which urogenital disorder?
 1) chlamydia
 2) gonorrhea
 3) syphilis
 4) nonspecific urogenital infection
18. Which signs and symptoms are indicative of autonomic dysreflexia (autonomic hyperreflexia)?

1) tachycardia, hyperthermia, and urticaria, with pain and spasm below the level of the lesion
2) hypoventilation and absence of deep tendon reflexes, with bilateral flaccid paralysis below the level of the lesion
3) hypotension, hyperthermia, and paresthesia, with pallor and goose bumps above the level of the lesion
4) hypertension, bradycardia, and severe headache, with sweating and flushing of the skin above the level of the lesion

19. By what mechanism are pain-reducing measures such as acupuncture and transcutaneous electrical nerve stimulation (TENS) thought to alleviate pain?

1) They inhibit the release of endogenous opioids and enkephalins.
2) They are morphine antagonists that moderate pain.
3) They stimulate the release of substance P.
4) They close the pain gate and recruit large fibers.

20. Which joint structure is involved in the initial stage of degenerative joint disease?

1) synovial membrane
2) articular cartilage
3) epiphyseal plate
4) joint cavity

21. What factor causes exacerbation of a sliding hiatal hernia?

1) an increase in intrathoracic pressure
2) an increase in intra-abdominal pressure
3) a decrease in intra-abdominal pressure
4) a decrease in intrathoracic pressure

22. What is the primary damage seen with gluten intolerance (celiac disease)?

1) edema of the mucous membrane
2) hyperplasia of lymphoid tissue
3) atrophy or loss of epithelial villi
4) increased cell production

23. Which treatment is recommended for the syndrome of inappropriate antidiuretic hormone secretion (SIADH)?

1) administration of hypotonic saline
2) infusion of 0.9% saline
3) injection of posterior pituitary extract
4) restriction of fluid intake

24. Which laboratory test result would indicate thyroid hypofunction?

1) low levels of ACTH
2) high levels of T4 and T3
3) low levels of parathyroid hormone
4) high levels of TSH

25. Avoidance of caffeine is typically recommended for individuals with which pair of disorders?

1) ovarian cysts and endometriosis
2) mastitis and amenorrhea
3) fibrocystic breast disease and premenstrual syndrome
4) pelvic inflammatory disease and leiomyomas

26. Which disease is most likely to be diagnosed in a 37-year-old individual who presents with joint pain, fever, morning stiffness, proteinuria, and a red rash across the bridge of the nose and cheeks?

1) gout
2) rheumatoid arthritis
3) systemic lupus erythematosus
4) ankylosing spondylitis

27. Which arterial blood gas result indicates that a patient is hyperventilating?

1) pH 7.32, PaCO2 45, PaO2 82, HCO3- 20
2) pH 7.48, PaCO2 30, PaO2 98, HCO3- 22
3) pH 7.20, PaCO2 60, PaO2 60, HCO3- 27
4) pH 7.51, PaCO2 52, PaO2 95, HCO3- 33

28. What is the ultimate goal of treatment for hepatic encephalopathy?

1) to decrease urea production
2) to eliminate carbohydrate intake
3) to reduce serum ammonia level
4) to prevent secondary infection
The following content chart is organized so that topics associated with broad content areas are grouped together. For example, topics related to neoplasia are grouped together so that you can study general concepts about tumors and then proceed to more detailed concepts about specific tumors.

In general, the content chart is intended to complement the presentation of the material in the Recommended Textbook. The listed topics can be studied in conjunction with and/or at about the same point as the associated topic is presented in the Copstead textbook.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoplasia</td>
<td>p. 365, Table 12–3 (369)</td>
<td>pp. 160–189</td>
</tr>
<tr>
<td>Tumor Markers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanisms of Metastasis</td>
<td>pp. 387–392, Table 12–8 (391)</td>
<td>pp. 168–172</td>
</tr>
<tr>
<td>Angiogenesis</td>
<td>p. 381</td>
<td>pp. 173, 177–178, 319–320</td>
</tr>
<tr>
<td>Neoplasia</td>
<td>pp. 364–368, Table 12–2 (367)</td>
<td>pp. 166–167, Table 8-1 (167)</td>
</tr>
<tr>
<td>Nomenclature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung Cancers</td>
<td>pp. 1279–1283, Table 35–4 (1281)</td>
<td>pp. 945–948</td>
</tr>
<tr>
<td>Brain Cancers</td>
<td>pp. 626–634, Table 18–4 (627)</td>
<td>pp. 516–519</td>
</tr>
<tr>
<td>Musculoskeletal Cancers (Rhabdomyosarcoma)</td>
<td>pp. 1585–1586, 1611–1613 (in relation to a child)</td>
<td>pp. 1465–1469, Table 8-1 (167)</td>
</tr>
<tr>
<td>Oral and Laryngeal Cancers</td>
<td>pp. 1278–1249</td>
<td>p. 181</td>
</tr>
<tr>
<td>Paraneoplastic Syndromes (Hormone Expression, etc.)</td>
<td>p. 394, Table 12–11 (395)</td>
<td>pp. 185–186</td>
</tr>
<tr>
<td>Pelvic Inflammatory Disease</td>
<td>pp. 813–816</td>
<td>p. 1394–1395</td>
</tr>
<tr>
<td>Fractures and Fracture Repair</td>
<td>pp. 1540–1545, Table 44–1 (1542)</td>
<td>pp. 23, 1451–1455, 1493–1494</td>
</tr>
<tr>
<td>Irritable Bowel Syndrome</td>
<td>pp. 1440–1444, Table 14–5 (1443)</td>
<td>p. 1184</td>
</tr>
<tr>
<td>Crohn's Disease</td>
<td>pp. 1442-1444</td>
<td>pp. 1184–1190</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Ulcerative Colitis</td>
<td>pp. 1440–1442</td>
<td>pp. 1184–1190</td>
</tr>
<tr>
<td>Peptic Ulcer Disease: Gastric and Duodenal Ulcers</td>
<td>pp. 1435–1439</td>
<td>pp. 1180–1182</td>
</tr>
<tr>
<td>Sprue</td>
<td>pp. 1494–1497</td>
<td>Indexed as “celiac disease”</td>
</tr>
<tr>
<td></td>
<td>(gluten-sensitive enteropathy)</td>
<td>pp. 1199–1201</td>
</tr>
<tr>
<td>Use of Corticosteroids</td>
<td>multiple indexed references</td>
<td>multiple indexed references</td>
</tr>
<tr>
<td>Diabetes: Causes of Death</td>
<td>pp. 735–752</td>
<td>pp. 1327–1329</td>
</tr>
<tr>
<td>Common Lab Values</td>
<td>Inside back cover</td>
<td>appendix A pp. 1585–1586</td>
</tr>
<tr>
<td>Bilirubin (Direct and Indirect)</td>
<td>pp. 86–87, 1411–1412</td>
<td>pp. 22, 668–669, 1215–1217</td>
</tr>
<tr>
<td></td>
<td>Table 40–6 (1417)</td>
<td></td>
</tr>
<tr>
<td>Interpretation of Blood Gases</td>
<td>Table 34–4 (1245)</td>
<td>pp. 919–924</td>
</tr>
<tr>
<td>Acid-Base Disorders and Interpretation of Lab Values</td>
<td>pp. 126–131</td>
<td>pp. 1071–1081</td>
</tr>
<tr>
<td>Plasma Proteins</td>
<td>pp. 945–947</td>
<td>pp. 239, 675, 733–735, 1024–1025</td>
</tr>
<tr>
<td></td>
<td>Inside back cover</td>
<td></td>
</tr>
<tr>
<td>Cardiac Isoenzymes</td>
<td>p. 1161</td>
<td>p. 804–805</td>
</tr>
<tr>
<td>Chart of Coagulation (Clotting) Factors</td>
<td>Table 25–7 (970)</td>
<td>pp. 651–654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table 26.3 (651)</td>
</tr>
<tr>
<td>Assessment Signs: Kernig's sign</td>
<td>p. 606</td>
<td>p. 515–516</td>
</tr>
<tr>
<td>Brudzinski's sign</td>
<td>p. 606</td>
<td>p. 515–516</td>
</tr>
<tr>
<td>Homans' sign</td>
<td>Not indexed</td>
<td>Not indexed</td>
</tr>
<tr>
<td>Trousseau's sign</td>
<td>p. 120</td>
<td>pp. 1051–1052</td>
</tr>
<tr>
<td>Chvostek's sign</td>
<td>p. 120</td>
<td>pp. 1057–1058</td>
</tr>
<tr>
<td>Influenza</td>
<td>pp. 320–322</td>
<td>pp. 932–934</td>
</tr>
<tr>
<td>Lyme Disease</td>
<td>pp. 617–618, 1640</td>
<td>pp. 259, 264–266</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>pp. 1457–1460</td>
<td>pp. 1220–1225</td>
</tr>
<tr>
<td>Schedule of Vaccinations and Immunizations</td>
<td>not indexed</td>
<td>pp. 28–29, 272, 376</td>
</tr>
<tr>
<td>Nephritic and Nephrotic Syndromes</td>
<td>pp. 1352–1359 (under glomerulonephritis), Table 38–7 (1356)</td>
<td>pp. 334, 1100–1103, 1506</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Relation of Creatine Kinase to Muscular Dystrophy</td>
<td>Table 45–4 (1606)</td>
<td>p. 462</td>
</tr>
<tr>
<td>Head Injury (Concussion, etc.)</td>
<td>pp. 581–589</td>
<td>pp. 503–505</td>
</tr>
<tr>
<td>Intracranial Pressure</td>
<td>pp. 555–557</td>
<td>pp. 496–500, 737</td>
</tr>
<tr>
<td>Coma</td>
<td>pp. 527–550</td>
<td>pp. 491–493</td>
</tr>
<tr>
<td></td>
<td>Table 17–3 (529)</td>
<td>Table 51–5</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>pp. 550–555</td>
<td>pp. 519–521</td>
</tr>
<tr>
<td>Seizure classification</td>
<td>Box 17–2 (554)</td>
<td>Chart 20.1, pp. 520–521</td>
</tr>
<tr>
<td>Pain</td>
<td>pp. 485–495</td>
<td>pp. 430–448</td>
</tr>
<tr>
<td>Pain Relief: Acupuncture, Transcutaneous Electrical Nerve Stimulation</td>
<td>Not indexed</td>
<td>pp. 448–450</td>
</tr>
</tbody>
</table>
Rationales

1.(IA1)
 *1) Atrophy refers to the decrease in the size of cells and their differentiated functions. An example is endocrine atrophy which occurs when endocrine signals are interrupted or when hormonal support is withdrawn.
 2) Dysplasia refers to the disorganized appearance of cells due to abnormal size, shape, and arrangement.
 3) Hyperplasia refers to an increase in the number of cells within a tissue, leading to an increase in the size of the tissue or organ. An example is enlargement of breast tissue during pregnancy or lactation.
 4) Hypertrophy refers to an increase in cell mass leading to enlargement of a tissue. It is stimulus-related and an adaptive response. An example is thickening of the myocardium of the ventricular wall.

2.(IA3)
 1) Cardiac cells demonstrate an increase in size, not in the number of cells.
 *2) Hyperplastic growth is dependent upon mitotic cell division which increases the number of cells. This is most often seen in epithelial tissues.
 3) Hyperplastic growth is not seen in nerve cells.
 4) Skeletal muscle cells demonstrate an increase in size, not in the number of cells.

3.(IC2)
 1) The mating of two carriers (heterozygous) results in a two-in-four chance of producing an offspring who carries the disease. It is possible, therefore, that not all the children will be carriers.
 *2) Cystic fibrosis is an autosomal recessive disorder. The mating of two carriers (heterozygous) results in a one-in-four chance of producing an offspring affected with the disorder, and a two-in-four chance of producing an offspring who carries the disease. The chance of having an offspring who is neither a carrier nor is affected with the disorder is one-in-four.
 3) It is possible to have an offspring who is neither a carrier nor is affected with the disorder.
 4) There is a one-in-four chance of having an offspring who is affected with the disorder.

4.(IIA2)
 *1) Corticosteroids promote healing in skin disorders by suppressing inflammation and reducing erythema, edema, and pruritis.
 2) Corticosteroids reduce the pruritis associated with some skin disorders but have no analgesic effect. Antipyretics, such as acetaminophen, are often used to relieve local discomfort of skin disorders.
 3) Corticosteroids inhibit collagen formation.
 4) Treatment with corticosteroids impairs the immune response and increases the risk of infection.

*correct answer
5.(IIA2)
1) There is no documented evidence that steroid hormone activity leads to malignant melanoma.

*2) The increased incidence of malignant melanoma is attributed to greater sun exposure. An increased frequency of malignant melanoma in the Sunbelt States of the US supports the role of ultraviolet (UV) light as a cause of this tumor.

3) Long-term antibiotic therapy is not associated with malignant melanoma.

4) There is no correlation between fungal skin infections and the incidence of malignant melanoma.

6.(IID3)
1) Myxedema (advanced hypothyroidism) is characterized by facial puffiness, nonpitting edema, and altered mental state.

2) Myasthenia gravis, an autoimmune neuromuscular disorder, is characterized by diplopia, ptosis, increasing weakness with activity, and possible respiratory failure.

3) Hashimoto's disease (lymphocytic thyroiditis) is characterized by an enlarged thyroid gland.

*4) Graves' disease is characterized by hyperthyroidism, thyromegaly (goiter), thyrotoxicosis, and exophthalmos.

7.(IID4)
*1) Anaphylactic reactions (type I hypersensitivity) are associated with angioedema, bronchial wheezing, and cutaneous itching.

2) Cytotoxic reactions (type II hypersensitivity) occur in transfusion reactions and hemolytic disease of the newborn.

3) Immune complex reactions (type III hypersensitivity) are seen in serum sickness, arthritis, and vasculitis.

4) Delayed hypersensitivity (type IV) develops over time and is seen in Guillain-Barré syndrome and contact dermatitis.

8.(IIA5)
1) This pattern describes third degree or complete heart block.

2) This pattern describes Mobitz type II second degree heart block.

3) This pattern describes first degree heart block.

*4) This pattern describes Mobitz type I (Wenckebach type I) second degree heart block.

9.(IIIC1)
1) The cardiac cycle refers to the repetitive contraction and relaxation of the heart muscle.

2) Myocardial conduction refers to the conduction of the electrical impulse in the myocardium.

*3) Preload, afterload, contractility, and the heart rate are hemodynamic parameters that influence cardiac output.

4) Atrial systole is atrial contraction.

10.(IIIF1)
1) The foramen ovale refers to the opening between the two atria of the heart in the fetus. It normally closes shortly before or after birth. If it remains open or patent, it is referred to as an atrial septal defect.

2) A ventricular septal defect occurs in the septum between the left and right ventricle. It permits blood to flow from the left to the right ventricle and to recirculate through the pulmonary artery and the lungs.

*3) Transposition of the great arteries is a fetal anomaly in which the aorta arises from the right ventricle and the pulmonary artery arises from the left ventricle, and there is no communication between the systemic and pulmonary circulations.

4) In atrial septal defect there is an abnormal opening between the atria that increases the flow of oxygenated blood into the right side of the heart. In ventricular septal defect, there is an opening below the septum that separates the ventricles and permits blood to flow from the left to the right ventricle and to recirculate through the pulmonary artery and the lungs.

*correct answer
11.(III\text{G}2)

1) Myocardial infarction is characterized by chest pain and serial ECG abnormalities. Friction rub is not present.

2) Angina pectoris is characterized by chest pain associated with intermittent myocardial ischemia. Transient ECG changes occur. Friction rub is not present.

3) Cardiac tamponade caused by an accumulation of pericardial fluid results in external compression of the heart chambers reducing stroke volume. Clinical manifestations include dull chest pain, diminished ECG amplitude, and muffled heart sounds. Pericardial friction rub is not present.

*4) Acute pericarditis is characterized by chest pain, friction rub, and ECG abnormalities. Systemic effects of inflammation and pericardial damage lead to stretching and rubbing of the visceral and pericardial layers.

12.(IV\text{A}2)

*1) Bronchiectasis is characterized by recurrent infection and inflammation of bronchial walls which leads to persistent dilation of bronchi and bronchioles.

2) Emphysema is characterized by destructive changes in the alveolar walls with enlargement of the distal air sacs.

3) Chronic bronchitis is defined as hypersecretion of the bronchial mucosa with a productive cough for greater than three months.

4) Cystic fibrosis is an autosomal recessive disorder of the exocrine glands that is characterized by the production of an abnormally thick obstructive mucus.

13.(IV\text{F}3)

*1) Since the most common site of infection with tuberculosis is the lungs, transmission occurs from the inhalation of contaminated droplets produced when an infected person coughs or sneezes.

2) Contaminated blood can transmit diseases such as hepatitis and HIV.

3) Fecal-oral contamination can transmit diseases such as salmonella and E.coli food poisoning.

4) Sexual contact can transmit diseases such as gonorrhea, herpes simplex, trichomonas, and HIV.

14.(VA\text{2})

1) Addition or retention of sodium leads to the development of fluid volume excess.

*2) The removal of a sodium-containing fluid from the body leads to extracellular fluid volume deficit.

3) Excess aldosterone secretion would promote sodium retention leading to the development of fluid volume excess.

4) Inadequate excretion of sodium and water would promote fluid volume excess.

15.(VC\text{1})

*1) A pH below normal (7.35–7.45) and PaCO$_2$ above normal (35–45 mm Hg) indicates primary respiratory acidosis. Anion gap 8 mEq/L is within normal limits (less than 15 mEq/L), thus eliminating metabolic acidosis. PaO$_2$ 65 mm Hg represents hypoxemia.

2) Although pH 7.2 represents acidosis, the elevation of the anion gap to 25 mEq/L indicates metabolic acidosis. The decrease in PaCO$_2$ indicates partial compensation since the lungs will hyperventilate to eliminate excessive carbonic acid in an attempt to restore the pH to normal.

3) Elevated pH (greater than 7.35–7.45) and decreased PaCO$_2$ indicates respiratory alkalosis. The normal anion gap indicates no metabolic acidosis component.

4) Although the PaCO$_2$ is elevated, the presence of pH 7.5 indicates an alkalotic abnormality.

*correct answer
16.(VE2)

1) As renal disease advances and GFR falls to about 25% of normal, phosphate is retained by the kidneys. Phosphate retention does cause the depression of serum calcium levels, but there will be decreased phosphate excretion by the kidneys.

2) Phosphate retention causes depression of serum calcium levels and interference with vitamin D3 activation by the kidneys. As renal function decreases, low serum calcium and high phosphate levels stimulate parathyroid activity resulting in bone resorption of calcium and phosphate.

*3) As renal disease advances, there is progressive disruption of calcium phosphate interrelations. Phosphate is retained when the GFR declines to 25%. There are decreased serum calcium levels secondary to phosphate retention and interference with vitamin D3 activation by the kidneys.

4) With advancing renal disease, phosphate retention causes depression of serum calcium levels or hypocalcemia

17.(VG2)

1) Chlamydia typically produces discharge.

2) Gonorrhea typically produces purulent discharge and painful urination.

*3) During the early stages of syphilis, a painless ulcerative lesion, or chancre, develops at the site of entry of the spirochete.

4) Nonspecific urogenital infections typically produce inflammation and pain.

18.(VIA2)

1) Tachycardia, hyperthermia, urticaria, with pain and spasm below the level of the lesion are not associated with autonomic dysreflexia.

2) Flaccid paralysis of all skeletal muscles and absence of deep tendon reflexes are associated with spinal shock. Hypoventilation occurs with spinal cord injury above C5.

3) After a complete spinal cord injury, paresthesia occurs below the level of injury. Hypotension is a symptom of spinal shock. In autonomic dysreflexia, pallor and goose bumps occur below the level of the lesion.

*4) Hypertension, bradycardia, and severe headache, with sweating and flushing of the skin above the level of the lesion are symptoms typical of autonomic dysreflexia. The stimulus that triggers autonomic dysreflexia is often a full bladder.

19.(VIG4)

1) Endogenous opioids and enkephalins decrease the pain response. Anything that interferes with or inhibits their action would not relieve pain.

2) Morphine antagonists would increase the awareness of painful sensations.

3) Substance P is a neuropeptide that promotes pain transmission.

*4) The effect of acupuncture and TENS can be explained by the gate control theory which suggests that large fiber stimulation decreases the pain response.

20.(VIH2)

1) Synovitis or inflammation of the synovial membrane is seen later in the degenerative disease process.

*2) Since articular cartilage has a limited capacity for repair and regeneration, trauma or stress can predispose the development of degenerative joint disease.

3) The epiphyseal plate or growth plate is not affected in degenerative joint disease.

4) Alterations in the joint cavity occur later in the degenerative disease process.

*correct answer
21.(VIIA4)
1) An increase in intrathoracic pressure would prevent the hernia from sliding upward.

2) An increase in intra-abdominal pressure, such as assuming a supine position, disrupts the competency of the gastroesophageal junction causing it to slide above the diaphragm into the thoracic cavity.

3) A decrease in intra-abdominal pressure would not be associated with an exacerbation of a hiatal hernia.

4) A decrease in intrathoracic pressure would have no effect on a hiatal hernia.

22.(VIIB2)
1) The mucosa of the small intestine appears flat in celiac disease. Mucous membrane edema is seen in inflammatory processes.

2) Hyperplasia of lymphoid tissue is not associated with celiac disease.

3) Celiac disease is characterized by defects in metabolism as a result of gluten intolerance. There is damage to the surface epithelium of the small intestine and atrophy of the villi.

4) Increased cellular production of gastric secretions can promote peptic ulcer disease.

23.(VIIIG5)
1) Administration of hypotonic saline would exacerbate the hyponatremia and fluid volume overload associated with SIADH.

2) Infusion of 0.9% sodium chloride isotonic solution may be used to raise the serum sodium level, but it may not be sufficient enough to treat the severe hyponatremia associated with SIADH.

3) Antidiuretic hormone is secreted from the posterior pituitary gland. Administration of posterior pituitary extract would exacerbate the clinical situation.

4) Fluid restriction is the treatment for SIADH. This treatment should result in a loss of body weight and an increase in serum osmolality.

24.(VIIH5)
1) Low levels of ACTH indicate adrenocortical hyperfunction.

2) High levels of T4 and T3 indicate hyperthyroidism.

3) Low levels of parathyroid hormone indicate parathyroid hypofunction.

4) TSH, thyroid-stimulating hormone, is elevated in thyroid hypofunction.

25.(VIIJ)
1) There is no evidence that avoiding caffeine has any effect on individuals with ovarian cysts or endometriosis.

2) Avoiding caffeine is not typically included in the treatment of mastitis or amenorrhea.

3) The methylxanthines, including the related alkaloid caffeine, increase metabolic activity in the breast. Decreasing caffeine in the diet has been effective in helping to alleviate breast tenderness and pain associated with fibrocystic breast disease and premenstrual syndrome (PMS). In addition, women with PMS are advised to avoid stimulants, such as caffeine, to help alleviate symptoms associated with anxiety.

4) Avoiding caffeine is not included in the treatment of pelvic inflammatory disease and leiomyomas.

26.(VIIIA)
1) Gout is a metabolic disorder that is associated with deposition of uric acid in bony and connective tissues.

2) Rheumatoid arthritis is an inflammatory disorder of the joints and synovial tissues.

3) Joint pain, fever, morning stiffness, proteinuria, and a red rash across the bridge of the nose and cheeks are symptoms of systemic lupus erythematosus, an autoimmune disorder that affects multiple organ systems.

4) Ankylosing spondylitis involves the entire spine. There is morning stiffness with marked limitation of motion. There is no associated fever or facial rash.
27.(VIIIB)

1) Decreased pH and decreased HCO$_3^-$ indicate an uncompensated metabolic acidosis. PaCO$_2$ 45 is normal and indicates that the patient is not yet hyperventilating as a compensatory mechanism to restore the pH to normal.

2) Elevated pH 7.48 and decreased PaCO$_2$ 30 indicates respiratory alkalosis. Hyperventilation is a cause of this acid-base imbalance.

3) PaCO$_2$ 60 and pH 7.20 indicate respiratory acidosis. Elevated PaCO$_2$ indicates alveolar hypoventilation leading to retention of CO$_2$. PaO$_2$ 60 indicates hypoxemia.

4) Elevated pH 7.51 and elevated HCO$_3^-$ 33 indicate metabolic alkalosis. PaCO$_2$ 52 indicates the lungs are compensating by retaining CO$_2$ through hypoventilation in an attempt to restore the pH to normal.

28.(VIII C)

1) Urea levels are decreased in liver disease.

2) A high-carbohydrate diet is given to provide the patient with calories. Protein is restricted to inhibit its breakdown into ammonia.

3) Reduction of serum ammonia levels is essential in the treatment of hepatic encephalopathy to slow its progression. Treatment to eliminate ammonia-producing substances from the GI tract includes administering neomycin and lactulose and reducing dietary protein intake.

4) Prevention of secondary infection is important since it can precipitate hepatic encephalopathy by increasing tissue metabolism which increases ammonia production; however, it is not the ultimate goal of treatment.
Registering for Your Exam

Register Online
www.excelsior.edu/examregistration
Follow the instructions and pay by Visa, MasterCard, American Express, or Discover Card.

Examination Administration
Pearson Testing Centers serve as the administrator for all Excelsior College computer-delivered exams. The Disability Services office at Excelsior College is responsible for considering requests for reasonable accommodations (exceptions for individual students with documented disabilities). If you are requesting an accommodation due to a disability, download and complete a Request for Accommodation form that can be accessed by visiting the Excelsior College website at www.excelsior.edu/disability-services.

Computer-Delivered Testing
You will take the exam by computer, entering your answers using either the keyboard or the mouse. The system is designed to be as user-friendly as possible, even for those with little or no computer experience. On-screen instructions are similar to those you would see in a paper examination booklet.

We strongly encourage you to use the online tutorial before taking your exam at a Pearson Testing Center. To access the tutorial, go to www.pearsonvue.com/ueexcel and click on the Pearson VUE Tutorial link on the right hand side of the page.

On the Day of Your Exam

Important Reminders
On the day of your exam, remember to:

• dress comfortably: the computer will not mind that you’re wearing your favorite relaxation outfit
• arrive at the test site rested and prepared to concentrate for an extended period
• allow sufficient time to travel, park, and locate the test center
• be prepared for possible variations in temperature at the test center due to weather changes or energy conservation measures
• bring your ID, but otherwise, don’t weigh yourself down with belongings that will have to be kept in a locker during the test.

Academic Honesty
Nondisclosure Statement

• All test takers must agree to the terms of the Excelsior College Academic Honesty Policy before taking an examination. The agreement will be presented on screen at the Pearson VUE Testing Center before the start of your exam.
• Once the test taker agrees to the terms of the Academic Honesty Nondisclosure Statement, the exam will begin.

If you choose not to accept the terms of the agreement

• your exam will be terminated
• you will be required to leave the testing center
you will not be eligible for a refund. For more information, review the Student Policy Handbook at www.excelsior.edu/studentpolicyhandbook.

Student behavior is monitored during and after the exam. Electronic measures are used to monitor the security of test items and scan for illegal use of intellectual property. This monitoring includes surveillance of Internet chat rooms, websites, and other public forums.

Information About UExcel Exams for Colleges and Universities

A committee of teaching faculty and practicing professionals determines the learning outcomes to be tested on each exam. Excelsior College Center for Educational Measurement staff oversee the technical aspects of test construction in accordance with current professional standards. To promote fairness in testing, we take special care to ensure that the language used in the exams and related materials is consistent, professional, and user friendly. Editorial staff perform systematic quantitative and qualitative reviews to ensure accuracy, clarity, and compliance with conventions of bias-free language usage.

Excelsior College, the test developer, recommends granting three (3) semester hours of upper-level undergraduate credit to students who receive a letter grade of C or higher on this examination. Other colleges and universities also recognize this exam as a basis for granting credit or advanced standing. Individual institutions set their own policies for the amount of credit awarded and the minimum acceptable score.

Pathophysiology Exam Development Committee

Linda A. Adamchak, DC (Western States Chiropractic College, Chiropractic/Clinical Studies, 1988)
Assistant Professor, Hudson Valley Community College

Marilyn Belli, MS, RN (University of Rochester, Medical-Surgical/Cardiopulmonary Nursing, 1983)
Assistant Professor, Utica College of Syracuse University

Wilfrid DuBois, PhD
(Boston University, Endocrinology, 1982)
Associate Professor, D'Youville College

Joan P. Frizzell, PhD
(University of Pennsylvania, Nursing, 1997)
Assistant Professor, LaSalle University

Karim Mehrazar, PhD, MT (ASCP)
(UHS/Chicago Medical School, Immunology, 1990)
Assistant Professor, Morgan State University

Dudley G. Moon, PhD (Albany Medical College of Union University, Physiology & Cell Biology, 1983)
Professor, Albany College of Pharmacy